$\mathrm{CF}_3\mathrm{S}\text{-}\mathrm{SUBSTITUTED}$ CYCLIC SULPHUR–NITROGEN DERIVATIVES AND THEIR MONOMERES

A. Haas and R. Walz*

Lehrstuhl für Anorganische Chemie II, Ruhr-Universität, Bochum (F.R.G.)

Trifluoromethylmercaptoamine reacts in the presence of $R_3\,N$ (R = methyl, ethyl, buthyl) with other bifunctional molecules such as SCl₂, $S_2\,Cl_2$, SOCl₂, SO₂Cl₂ to give only undefined products. The sulphurchlorides are also not able to cleave the Si-N-bond in the newly prepared CF₃SN(SiMe₃)₂ and CF₃SSN(SiMe₃)₂. Halogenes , however, react with the Si-N-bond to give sulphurimides according to

 $CF_3 SN(SiMe_3)_2 + 2Cl_2 \longrightarrow CF_3 S(Cl)NCl + 2ClSiMe_3$

In the presence of sterically hindered amines like chinoline or acridine the reaction between $CF_3 SNH_2$ and sulphurchlorides provides monomeres. e.g.

 $CF_3 SNH_2 + S_2 Cl_2 \longrightarrow CF_3 SNSS + 2HC1$

A cyclic S-N-compound was prepared from $\rm S_3\,N_2\,Cl_2$ and $\rm Hg(SCF_3\,)_2$.

Several monomeres, cyclic compounds and polymeres will be presented.

472

I-50